The Profile of Binary Search Trees
Chauvin, Brigitte ; Drmota, Michael ; Jabbour-Hattab, Jean
Ann. Appl. Probab., Tome 11 (2001) no. 2, p. 1042-1062 / Harvested from Project Euclid
We characterize the limiting behavior of the number of nodes in level $k$ of binary search trees $T_n$ in the central region $1.2 \log n \leq 2.8 \log n$. Especially we show that the width $\bar{V}_n$ (the maximal number of internal nodes at the same level) satisfies $\bar{V}_n \sim (n/\sqrt{4\pi\log n})$ as $n \to \infty$ a.s.
Publié le : 2001-11-14
Classification:  Repartition of nodes for binary search trees,  martingales,  asymptotic series expansion,  complex analysis,  60F17,  60Q25,  05C05
@article{1015345394,
     author = {Chauvin, Brigitte and Drmota, Michael and Jabbour-Hattab, Jean},
     title = {The Profile of Binary Search Trees},
     journal = {Ann. Appl. Probab.},
     volume = {11},
     number = {2},
     year = {2001},
     pages = { 1042-1062},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1015345394}
}
Chauvin, Brigitte; Drmota, Michael; Jabbour-Hattab, Jean. The Profile of Binary Search Trees. Ann. Appl. Probab., Tome 11 (2001) no. 2, pp.  1042-1062. http://gdmltest.u-ga.fr/item/1015345394/