Long strange segments of a stochastic process
Mansfield, Peter ; Rachev, Svetlozar T. ; Samorodnitsky, Gennady
Ann. Appl. Probab., Tome 11 (2001) no. 2, p. 878-921 / Harvested from Project Euclid
We study long strange intervals in a linear stationary stochastic process with regularly varying tails. It turns out that the length of the longest strange interval grows, as a function of the sample size, at different rates in different parts of the parameter space.We argue that this phenomenon may be viewed in a fruitful way as a phase transition between short-and long-range dependence.We prove a limit theorem that may form a basis for statistical detection of long-range dependence.
Publié le : 2001-08-14
Classification:  Long-range dependence,  stationary process,  large deviations,  heavy tails,  infinite moving average,  maxima,  regular variation,  extreme value distribution,  applications in finance,  insurance,  telecommunications,  60G10,  60F15,  60G70
@article{1015345352,
     author = {Mansfield, Peter and Rachev, Svetlozar T. and Samorodnitsky, Gennady},
     title = {Long strange segments of a stochastic process},
     journal = {Ann. Appl. Probab.},
     volume = {11},
     number = {2},
     year = {2001},
     pages = { 878-921},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1015345352}
}
Mansfield, Peter; Rachev, Svetlozar T.; Samorodnitsky, Gennady. Long strange segments of a stochastic process. Ann. Appl. Probab., Tome 11 (2001) no. 2, pp.  878-921. http://gdmltest.u-ga.fr/item/1015345352/