Adaptive estimation in autoregression or -mixing regression via model selection
Baraud, Y ; Comte, F. ; Viennet, G.
Ann. Statist., Tome 29 (2001) no. 2, p. 839-875 / Harvested from Project Euclid
We study the problem of estimatingsome unknown regression function in a $\beta$-mixing dependent framework. To this end, we consider some collection of models which are finite dimensional spaces. A penalized least-squares estimator (PLSE) is built on a data driven selected model among this collection. We state non asymptotic risk bounds for this PLSE and give several examples where the procedure can be applied (autoregression, regression with arithmetically $\beta$-mixing design points, regression with mixing errors, estimation in additive frameworks, estimation of the order of the autoregression). In addition we show that under a weak moment condition on the errors, our estimator is adaptive in the minimax sense simultaneously over some family of Besov balls.
Publié le : 2001-06-14
Classification:  Nonparametric regression,  least-squares estimator,  model selection,  adaptive estimation,  autoregression order,  additive framework,  time series,  mixing processes,  62G08,  62J02.
@article{1009210692,
     author = {Baraud, Y and Comte, F. and Viennet, G.},
     title = {Adaptive estimation in autoregression or -mixing regression via
			 model selection},
     journal = {Ann. Statist.},
     volume = {29},
     number = {2},
     year = {2001},
     pages = { 839-875},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1009210692}
}
Baraud, Y; Comte, F.; Viennet, G. Adaptive estimation in autoregression or -mixing regression via
			 model selection. Ann. Statist., Tome 29 (2001) no. 2, pp.  839-875. http://gdmltest.u-ga.fr/item/1009210692/