E-optimal designs for rational models
Imhof, Lorens ; Studden, William J.
Ann. Statist., Tome 29 (2001) no. 2, p. 763-783 / Harvested from Project Euclid
E-optimal and standardized-E-optimal designs for various types of rational regression models are determined. In most cases, optimal designs are found for every parameter subsystem. The design points and weights are given explicitlyin terms of Bernstein-Szegő polynomials.The analysis is based on a general theorem on E-optimal designs for Chebyshev systems.
Publié le : 2001-06-14
Classification:  Approximate designs,  Bernstein-Szego polynomials,  Chebyshev systems,  E-criterion,  standardized criterion,  62K05
@article{1009210689,
     author = {Imhof, Lorens and Studden, William J.},
     title = {E-optimal designs for rational models},
     journal = {Ann. Statist.},
     volume = {29},
     number = {2},
     year = {2001},
     pages = { 763-783},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1009210689}
}
Imhof, Lorens; Studden, William J. E-optimal designs for rational models. Ann. Statist., Tome 29 (2001) no. 2, pp.  763-783. http://gdmltest.u-ga.fr/item/1009210689/