The First Exit Time of Planar Brownian Motion from The Interior Of a Parabola
Bañuelos, Rodrigo ; DeBlassie, R.Dante ; Smits, Robert
Ann. Probab., Tome 29 (2001) no. 1, p. 882-901 / Harvested from Project Euclid
Let $D$ be the interior of a parabola in $\mathbb{R}^2$ and $\tau_D$ the first exit time of Brownian motion from $D$ .We show $.-log P(\tau_D) >t)$ behaves like $t^{1 /3}$ as $t \to \infty$.
Publié le : 2001-04-14
Classification:  Exit times,  eigenfunction expansions,  Feynman-Kac functionals,  Bessel processes,  large deviation,  60J65,  60J50,  60F10.
@article{1008956696,
     author = {Ba\~nuelos, Rodrigo and DeBlassie, R.Dante and Smits, Robert},
     title = {The First Exit Time of Planar Brownian Motion from The Interior Of
		 a Parabola},
     journal = {Ann. Probab.},
     volume = {29},
     number = {1},
     year = {2001},
     pages = { 882-901},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1008956696}
}
Bañuelos, Rodrigo; DeBlassie, R.Dante; Smits, Robert. The First Exit Time of Planar Brownian Motion from The Interior Of
		 a Parabola. Ann. Probab., Tome 29 (2001) no. 1, pp.  882-901. http://gdmltest.u-ga.fr/item/1008956696/