The LIL for canonical U-statistics of order 2
Giné, Evarist ; Kwapień, Stanislaw ; Latała, Rafał ; Zinn, Joel
Ann. Probab., Tome 29 (2001) no. 1, p. 520-557 / Harvested from Project Euclid
Let $X, X_i, i \in \mathbf{N}$, be independent identically distributed random variables and let $h(x,y) = h(y,x)$ be a measurable function of two variables. It is shown that the bounded law of the iterated logarithm, $\limsup _n \log n(\log n)^{-1}|\sum_{1\le i
Publié le : 2001-02-14
Classification:  U-statistics (canonical or degenerate),  law of the iterated logarithm,  60F15
@article{1008956343,
     author = {Gin\'e, Evarist and Kwapie\'n, Stanislaw and Lata\l a, Rafa\l\ and Zinn, Joel},
     title = {The LIL for canonical U-statistics of order 2},
     journal = {Ann. Probab.},
     volume = {29},
     number = {1},
     year = {2001},
     pages = { 520-557},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1008956343}
}
Giné, Evarist; Kwapień, Stanislaw; Latała, Rafał; Zinn, Joel. The LIL for canonical U-statistics of order 2. Ann. Probab., Tome 29 (2001) no. 1, pp.  520-557. http://gdmltest.u-ga.fr/item/1008956343/