No more than three favorite sites for simple random walk
Tóth, Bálint
Ann. Probab., Tome 29 (2001) no. 1, p. 484-503 / Harvested from Project Euclid
We prove that, with probability 1, eventually there are no more than three favorite (i.e., most visited) sites of simple symmetric random walks. This partially answers a relatively longstanding question of Erdös and Révész.
Publié le : 2001-02-14
Classification:  Random walk,  local time,  favorite sites,  most visited sites,  60J15,  60J55
@article{1008956341,
     author = {T\'oth, B\'alint},
     title = {No more than three favorite sites for simple random walk},
     journal = {Ann. Probab.},
     volume = {29},
     number = {1},
     year = {2001},
     pages = { 484-503},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1008956341}
}
Tóth, Bálint. No more than three favorite sites for simple random walk. Ann. Probab., Tome 29 (2001) no. 1, pp.  484-503. http://gdmltest.u-ga.fr/item/1008956341/