An extension of Lobachevsky formula
Jolany, Hassan
arXiv, 1004.2653 / Harvested from arXiv
In this paper we extend the Dirichlet integral formula of Lobachevsky. Let $f(x)$ be a continuous function and satisfy in the $\pi$-periodic assumption $f(x+\pi)=f(x)$, and $f(\pi-x)=f(x)$, $0\leq x<\infty $. If the integral $\int_0^\infty \frac{\sin^4x}{x^4}f(x)dx$ defined in the sense of the improper Riemann integral, then we show the following equality $$\int_0^\infty \frac{\sin^4x}{x^4}f(x)dx=\int_0^{\frac{\pi}{2} }f(t)dt-\frac{2}{3}\int_0^{\frac{\pi}{2} }\sin^2tf(t)dt$$ hence if we take $f(x)=1$, then we have $$\int_0^\infty \frac{\sin^4x}{x^4}dx=\frac{\pi}{3}$$ Moreover, we give a method for computing $\int_0^\infty \frac{\sin^{2n}x}{x^{2n}}f(x)dx$ for $n\in \mathbb N$
Publié le : 2010-04-14
Classification:  Mathematics - General Mathematics
@article{1004.2653,
     author = {Jolany, Hassan},
     title = {An extension of Lobachevsky formula},
     journal = {arXiv},
     volume = {2010},
     number = {0},
     year = {2010},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1004.2653}
}
Jolany, Hassan. An extension of Lobachevsky formula. arXiv, Tome 2010 (2010) no. 0, . http://gdmltest.u-ga.fr/item/1004.2653/