We present a generalization of quantum Stein's Lemma to the situation in
which the alternative hypothesis is formed by a family of states, which can
moreover be non-i.i.d.. We consider sets of states which satisfy a few natural
properties, the most important being the closedness under permutations of the
copies. We then determine the error rate function in a very similar fashion to
quantum Stein's Lemma, in terms of the quantum relative entropy.
Our result has two applications to entanglement theory. First it gives an
operational meaning to an entanglement measure known as regularized relative
entropy of entanglement. Second, it shows that this measure is faithful, being
strictly positive on every entangled state. This implies, in particular, that
whenever a multipartite state can be asymptotically converted into another
entangled state by local operations and classical communication, the rate of
conversion must be non-zero. Therefore, the operational definition of
multipartite entanglement is equivalent to its mathematical definition.