The transfer in mod-p group cohomology between \Sigma_p \int \Sigma_{p^{n-1}}, \Sigma_{p^{n-1}} \int \Sigma_p and \Sigma_{p^n}
Kechagias, Nondas E.
arXiv, 0903.5239 / Harvested from arXiv
In this work we compute the induced transfer map: $$\bar\tau^\ast: \func{Im}(res^\ast:H^\ast(G) \to H^\ast(V)) \to \func{Im}(res^\ast: H^\ast (\Sigma_{p^n}) \to H^\ast(V))$$ in $\func{mod}p$-cohomology. Here $\Sigma_{p^{n}}$ is the symmetric group acting on an $n$-dimensional $\mathbb F_p$ vector space $V$, $G=\Sigma_{p^{n},p}$ a $p$-Sylow subgroup, $\Sigma_{p^{n-1}}\int \Sigma_{p}$, or $\Sigma_{p}\int \Sigma_{p^{n-1}}$. Some answers are given by natural invariants which are related to certain parabolic subgroups. We also compute a free module basis for certain rings of invariants over the classical Dickson algebra. This provides a computation of the image of the appropriate restriction map. Finally, if $ \xi :\func{Im}(res^\ast:H^\ast(G) \to H^\ast(V)) \to \func{Im}(res^\ast}: H^\ast(\Sigma_{p^n}) \to H^\ast(V)) $ is the natural epimorphism, then we prove that $\bar\tau^\ast=\xi$ in the ideal generated by the top Dickson algebra generator.
Publié le : 2009-03-30
Classification:  Mathematics - Algebraic Topology,  Mathematics - K-Theory and Homology,  55S10, 20J05, 18G10
@article{0903.5239,
     author = {Kechagias, Nondas E.},
     title = {The transfer in mod-p group cohomology between \Sigma\_p \int
  \Sigma\_{p^{n-1}}, \Sigma\_{p^{n-1}} \int \Sigma\_p and \Sigma\_{p^n}},
     journal = {arXiv},
     volume = {2009},
     number = {0},
     year = {2009},
     language = {en},
     url = {http://dml.mathdoc.fr/item/0903.5239}
}
Kechagias, Nondas E. The transfer in mod-p group cohomology between \Sigma_p \int
  \Sigma_{p^{n-1}}, \Sigma_{p^{n-1}} \int \Sigma_p and \Sigma_{p^n}. arXiv, Tome 2009 (2009) no. 0, . http://gdmltest.u-ga.fr/item/0903.5239/