Non-commutative Schur-Horn theorems and extended majorization for hermitian matrices
Massey, Pedro
arXiv, 0712.2246 / Harvested from arXiv
Let $\mathcal A\subseteq \mat$ be a unital $*$-subalgebra of the algebra $\mat$ of all $n\times n$ complex matrices and let $B$ be an hermitian matrix. Let $\U_n(B)$ denote the unitary orbit of $B$ in $\mat$ and let $\mathcal E_\mathcal A$ denote the trace preserving conditional expectation onto $\mathcal A$. We give an spectral characterization of the set $$ \mathcal E_\mathcal A(\U_n(B))=\{\mathcal E_\mathcal A(U^* B U): U\in \mat,\ \text{unitary matrix}\}.$$ We obtain a similar result for the contractive orbit of a positive semi-definite matrix $B$. We then use these results to extend the notions of majorization and submajorization between self-adjoint matrices to spectral relations that come together with extended (non-commutative) Schur-Horn type theorems.
Publié le : 2007-12-13
Classification:  Mathematics - Operator Algebras,  15A24,  15A42
@article{0712.2246,
     author = {Massey, Pedro},
     title = {Non-commutative Schur-Horn theorems and extended majorization for
  hermitian matrices},
     journal = {arXiv},
     volume = {2007},
     number = {0},
     year = {2007},
     language = {en},
     url = {http://dml.mathdoc.fr/item/0712.2246}
}
Massey, Pedro. Non-commutative Schur-Horn theorems and extended majorization for
  hermitian matrices. arXiv, Tome 2007 (2007) no. 0, . http://gdmltest.u-ga.fr/item/0712.2246/