1/f Noise in Fractal Quaternionic Structures
Meskauskas, T. ; Kaulakys, B.
arXiv, 0511074 / Harvested from arXiv
We consider the logistic map over quaternions $\mathbb{H}\sim\mathbb{R}^4$ and different 2D projections of Mandelbrot set in 4D quaternionic space. The approximations (for finite number of iterations) of these 2D projections are fractal circles. We show that the point process defined by radiuses $R_j$ of those fractal circles exhibits pure 1/f noise.
Publié le : 2005-11-25
Classification:  Mathematical Physics,  Condensed Matter - Statistical Mechanics,  Nonlinear Sciences - Chaotic Dynamics,  Physics - Computational Physics
@article{0511074,
     author = {Meskauskas, T. and Kaulakys, B.},
     title = {1/f Noise in Fractal Quaternionic Structures},
     journal = {arXiv},
     volume = {2005},
     number = {0},
     year = {2005},
     language = {en},
     url = {http://dml.mathdoc.fr/item/0511074}
}
Meskauskas, T.; Kaulakys, B. 1/f Noise in Fractal Quaternionic Structures. arXiv, Tome 2005 (2005) no. 0, . http://gdmltest.u-ga.fr/item/0511074/