$L^2$-index of the Dirac operator of generalized Euclidean Taub-NUT metrics
Moroianu, Sergiu ; Visinescu, Mihai
arXiv, 0511025 / Harvested from arXiv
We compute the axial anomaly for the Taub-NUT metric on $R^4$. We show that the axial anomaly for the generalized Taub-NUT metrics introduced by Iwai and Katayama is finite, although the Dirac operator is not Fredholm. We show that the essential spectrum of the Dirac operator is the whole real line.
Publié le : 2005-11-07
Classification:  Mathematical Physics,  General Relativity and Quantum Cosmology,  High Energy Physics - Theory
@article{0511025,
     author = {Moroianu, Sergiu and Visinescu, Mihai},
     title = {$L^2$-index of the Dirac operator of generalized Euclidean Taub-NUT
  metrics},
     journal = {arXiv},
     volume = {2005},
     number = {0},
     year = {2005},
     language = {en},
     url = {http://dml.mathdoc.fr/item/0511025}
}
Moroianu, Sergiu; Visinescu, Mihai. $L^2$-index of the Dirac operator of generalized Euclidean Taub-NUT
  metrics. arXiv, Tome 2005 (2005) no. 0, . http://gdmltest.u-ga.fr/item/0511025/