Load Capacity of Bodies
Segev, Reuven
arXiv, 0511014 / Harvested from arXiv
For the stress analysis in a plastic body $\Omega$, we prove that there exists a maximal positive number $C$, the \emph{load capacity ratio,} such that the body will not collapse under any external traction field $t$ bounded by $Y_{0}C$, where $Y_0$ is the elastic limit. The load capacity ratio depends only on the geometry of the body and is given by $$ \frac{1}{C}=\sup_{w\in LD(\Omega)_D} \frac{\int_{\partial\Omega}|w|dA} {\int_{\Omega}|\epsilon(w)|dV}=\left\|\gamma_D\right\|. $$ Here, $LD(\Omega)_D$ is the space of isochoric vector fields $w$ for which the corresponding stretchings $\epsilon(w)$ are assumed to be integrable and $\gamma_D$ is the trace mapping assigning the boundary value $\gamma_D(w)$ to any $w\in LD(\Omega)_D$.
Publié le : 2005-11-01
Classification:  Mathematics - Analysis of PDEs,  Mathematical Physics,  35Q72,  46E35
@article{0511014,
     author = {Segev, Reuven},
     title = {Load Capacity of Bodies},
     journal = {arXiv},
     volume = {2005},
     number = {0},
     year = {2005},
     language = {en},
     url = {http://dml.mathdoc.fr/item/0511014}
}
Segev, Reuven. Load Capacity of Bodies. arXiv, Tome 2005 (2005) no. 0, . http://gdmltest.u-ga.fr/item/0511014/