Equivariant asymptotics for Bohr-Sommerfeld Lagrangian submanifolds
Debernardi, Marco ; Paoletti, Roberto
arXiv, 0510593 / Harvested from arXiv
Suppose given a complex projective manifold $M$ with a fixed Hodge form $\Omega$. The Bohr-Sommerfeld Lagrangian submanifolds of $(M,\Omega)$ are the geometric counterpart to semi-classical physical states, and their geometric quantization has been extensively studied. Here we revisit this theory in the equivariant context, in the presence of a compatible (Hamiltonian) action of a connected compact Lie group.
Publié le : 2005-10-27
Classification:  Mathematics - Symplectic Geometry,  Mathematical Physics,  Mathematics - Algebraic Geometry
@article{0510593,
     author = {Debernardi, Marco and Paoletti, Roberto},
     title = {Equivariant asymptotics for Bohr-Sommerfeld Lagrangian submanifolds},
     journal = {arXiv},
     volume = {2005},
     number = {0},
     year = {2005},
     language = {en},
     url = {http://dml.mathdoc.fr/item/0510593}
}
Debernardi, Marco; Paoletti, Roberto. Equivariant asymptotics for Bohr-Sommerfeld Lagrangian submanifolds. arXiv, Tome 2005 (2005) no. 0, . http://gdmltest.u-ga.fr/item/0510593/