It has been proven by Rosu and Cornejo-Perez in 2005 that for some nonlinear
second-order ODEs it is a very simple task to find one particular solution once
the nonlinear equation is factorized with the use of two first-order
differential operators. Here, it is shown that an interesting class of
parametric solutions is easy to obtain if the proposed factorization has a
particular form, which happily turns out to be the case in many problems of
physical interest. The method that we exemplify with a few explicitly solved
cases consists in using the general solution of the Riccati equation, which
contributes with one parameter to this class of parametric solutions. For these
nonlinear cases, the Riccati parameter serves as a `growth' parameter from the
trivial null solution up to the particular solution found through the
factorization procedure