We establish that the leading critical scaling of the single-copy
entanglement is exactly one half of the entropy of entanglement of a block in
critical infinite spin chains in a general setting, using methods of conformal
field theory. Conformal symmetry imposes that the single-copy entanglement for
critical many-body systems scales as E_1(\rho_L)=(c/6) \log L- (c/6)
(\pi^2/\log L) + O(1/L), where L is the number of constituents in a block of an
infinite chain and c corresponds to the central charge. This proves that from a
single specimen of a critical chain, already half the entanglement can be
distilled compared to the rate that is asymptotically available. The result is
substantiated by a quantitative analysis for all translationally invariant
quantum spin chains corresponding to general isotropic quasi-free fermionic
models. An analytic example of the XY model shows that away from criticality
the above simple relation is only maintained near the quantum phase transition
point.