Singular Poisson reduction of cotangent bundles
Hochgerner, Simon ; Rainer, Armin
arXiv, 0508455 / Harvested from arXiv
We consider the Poisson reduced space $(T^*Q)/K$ with respect to a cotangent lifted action. It is assumed that $K$ is a compact Lie group which acts by isometries on the Riemannian manifold $Q$ and that the action on $Q$ is of single isotropy type. Realizing $(T^*Q)/K$ as a Weinstein space we determine the induced Poisson structure and its symplectic leaves. We thus extend the Weinstein construction for principal fiber bundles to the case of surjective Riemannian submersions $Q\to Q/K$.
Publié le : 2005-08-24
Classification:  Mathematics - Symplectic Geometry,  Mathematical Physics,  53D17, 53D20
@article{0508455,
     author = {Hochgerner, Simon and Rainer, Armin},
     title = {Singular Poisson reduction of cotangent bundles},
     journal = {arXiv},
     volume = {2005},
     number = {0},
     year = {2005},
     language = {en},
     url = {http://dml.mathdoc.fr/item/0508455}
}
Hochgerner, Simon; Rainer, Armin. Singular Poisson reduction of cotangent bundles. arXiv, Tome 2005 (2005) no. 0, . http://gdmltest.u-ga.fr/item/0508455/