A preliminary investigation is made of possible applications in quantum
theory of the topos formed by the collection of all $M$-sets, where $M$ is a
monoid. Earlier results on topos aspects of quantum theory can be rederived in
this way. However, the formalism also suggests a new way of constructing a
`neo-realist' interpretation of quantum theory in which the truth values of
propositions are determined by the actions of the monoid of strings of finite
projection operators. By these means, a novel topos perspective is gained on
the concept of state-vector reduction.