The nature of manifolds of periodic points for higher dimensional integrable maps II
Saito, Satoru ; Saitoh, Noriko
arXiv, 0508064 / Harvested from arXiv
We study periodicity conditions of a rational map on $\bm{C}^d$ with $p$ invariants and show that a set of isolated periodic points and an algebraic variety of finife dimension do not exist in one map simultaneously if $p\ge d/2$. We also discuss in detail how the transition takes place between them.
Publié le : 2005-08-31
Classification:  Mathematical Physics,  High Energy Physics - Theory
@article{0508064,
     author = {Saito, Satoru and Saitoh, Noriko},
     title = {The nature of manifolds of periodic points for higher dimensional
  integrable maps II},
     journal = {arXiv},
     volume = {2005},
     number = {0},
     year = {2005},
     language = {en},
     url = {http://dml.mathdoc.fr/item/0508064}
}
Saito, Satoru; Saitoh, Noriko. The nature of manifolds of periodic points for higher dimensional
  integrable maps II. arXiv, Tome 2005 (2005) no. 0, . http://gdmltest.u-ga.fr/item/0508064/