Incompressible representations of the Birman-Wenzl-Murakami algebra
Pasquier, V.
arXiv, 0507364 / Harvested from arXiv
We construct a representation of the Birman-Wenzl-Murakami algebra acting on a space of polynomials in n variables vanishing when three points coincide. These polynomials are closely related to the Pfaffian state of the Quantum Hall Effect and to the components the transfer matrix eigenvector of a O(n) crossing loop model.
Publié le : 2005-07-18
Classification:  Mathematics - Quantum Algebra,  Condensed Matter - Mesoscale and Nanoscale Physics,  Mathematical Physics
@article{0507364,
     author = {Pasquier, V.},
     title = {Incompressible representations of the Birman-Wenzl-Murakami algebra},
     journal = {arXiv},
     volume = {2005},
     number = {0},
     year = {2005},
     language = {en},
     url = {http://dml.mathdoc.fr/item/0507364}
}
Pasquier, V. Incompressible representations of the Birman-Wenzl-Murakami algebra. arXiv, Tome 2005 (2005) no. 0, . http://gdmltest.u-ga.fr/item/0507364/