The basic combinatorial properties of a complete set of mutually unbiased
bases (MUBs) of a q-dimensional Hilbert space H\_q, q = p^r with p being a
prime and r a positive integer, are shown to be qualitatively mimicked by the
configuration of points lying on a proper conic in a projective Hjelmslev plane
defined over a Galois ring of characteristic p^2 and rank r. The q vectors of a
basis of H\_q correspond to the q points of a (so-called) neighbour class and
the q+1 MUBs answer to the total number of (pairwise disjoint) neighbour
classes on the conic.