Symmetries of modules of differential operators
Gargoubi, Hichem ; Mathonet, Pierre ; Ovsienko, Valentin
arXiv, 0506044 / Harvested from arXiv
Let ${\cal F}\_\lambda(S^1)$ be the space of tensor densities of degree (or weight) $\lambda$ on the circle $S^1$. The space ${\cal D}^k\_{\lambda,\mu}(S^1)$ of $k$-th order linear differential operators from ${\cal F}\_\lambda(S^1)$ to ${\cal F}\_\mu(S^1)$ is a natural module over $\mathrm{Diff}(S^1)$, the diffeomorphism group of $S^1$. We determine the algebra of symmetries of the modules ${\cal D}^k\_{\lambda,\mu}(S^1)$, i.e., the linear maps on ${\cal D}^k\_{\lambda,\mu}(S^1)$ commuting with the $\mathrm{Diff}(S^1)$-action. We also solve the same problem in the case of straight line $\mathbb{R}$ (instead of $S^1$) and compare the results in the compact and non-compact cases.
Publié le : 2005-06-16
Classification:  Mathematical Physics,  Mathematics - Differential Geometry,  MSC 17B56
@article{0506044,
     author = {Gargoubi, Hichem and Mathonet, Pierre and Ovsienko, Valentin},
     title = {Symmetries of modules of differential operators},
     journal = {arXiv},
     volume = {2005},
     number = {0},
     year = {2005},
     language = {en},
     url = {http://dml.mathdoc.fr/item/0506044}
}
Gargoubi, Hichem; Mathonet, Pierre; Ovsienko, Valentin. Symmetries of modules of differential operators. arXiv, Tome 2005 (2005) no. 0, . http://gdmltest.u-ga.fr/item/0506044/