Classical $\bold{r}$-Matrices and Compatible Poisson Structures for Lax Equations on Poisson Algebras
Li, Luen-Chau
arXiv, 0506029 / Harvested from arXiv
Given a classical $r$-matrix on a Poisson algebra, we show how to construct a natural family of compatible Poisson structures for the Hamiltonian formulation of Lax equations. Examples for which our formalism applies include the Benny hierachy, the dispersionless Toda lattice hierachy, the dispersionless KP and modified KP hierachies, the dispersionless Dym hierachy etc.
Publié le : 2005-06-10
Classification:  Mathematical Physics,  Mathematics - Symplectic Geometry
@article{0506029,
     author = {Li, Luen-Chau},
     title = {Classical $\bold{r}$-Matrices and Compatible Poisson Structures for Lax
  Equations on Poisson Algebras},
     journal = {arXiv},
     volume = {2005},
     number = {0},
     year = {2005},
     language = {en},
     url = {http://dml.mathdoc.fr/item/0506029}
}
Li, Luen-Chau. Classical $\bold{r}$-Matrices and Compatible Poisson Structures for Lax
  Equations on Poisson Algebras. arXiv, Tome 2005 (2005) no. 0, . http://gdmltest.u-ga.fr/item/0506029/