H_T Vertex Algebras and the Infinite Toda Lattice
Bergvelt, Maarten
arXiv, 0505289 / Harvested from arXiv
Let H_T=C[T,T^{-1}] be the Hopf algebra of symmetries of a lattice of rank 1, or equivalently, H_T is the group algebra of a free Abelian group with one generator T. We construct conformal algebras, vertex Poisson algebras and vertex algebras with H_T as symmetry. For example, the Hamiltonian structure for the infinite Toda lattice gives rise to an H_T-vertex Poisson structure on a free difference algebra. Examples of H_T-vertex algebras are constructed from representations of a class of infinite dimensional Lie algebras related to H_T in the same way loop algebras are related to the Hopf algebra H_D=C[D] of infinitesimal translations used in the usual vertex algebras.
Publié le : 2005-05-13
Classification:  Mathematics - Quantum Algebra,  Mathematical Physics,  MSC-class: 17B69
@article{0505289,
     author = {Bergvelt, Maarten},
     title = {H\_T Vertex Algebras and the Infinite Toda Lattice},
     journal = {arXiv},
     volume = {2005},
     number = {0},
     year = {2005},
     language = {en},
     url = {http://dml.mathdoc.fr/item/0505289}
}
Bergvelt, Maarten. H_T Vertex Algebras and the Infinite Toda Lattice. arXiv, Tome 2005 (2005) no. 0, . http://gdmltest.u-ga.fr/item/0505289/