Tomograms in the Quantum-Classical transition
Man'ko, V. I. ; Marmo, G. ; Simoni, A. ; Stern, A. ; Ventriglia, F.
arXiv, 0505220 / Harvested from arXiv
The quantum-classical limits for quantum tomograms are studied and compared with the corresponding classical tomograms, using two different definitions for the limit. One is the Planck limit where $\hbar \to 0$ in all $\hbar $-dependent physical observables, and the other is the Ehrenfest limit where $\hbar \to 0$ while keeping constant the mean value of the energy.The Ehrenfest limit of eigenstate tomograms for a particle in a box and a harmonic oscillatoris shown to agree with the corresponding classical tomograms of phase-space distributions, after a time averaging. The Planck limit of superposition state tomograms of the harmonic oscillator demostrating the decreasing contribution of interferences terms as $\hbar \to 0$.
Publié le : 2005-05-30
Classification:  Quantum Physics,  High Energy Physics - Theory,  Mathematical Physics
@article{0505220,
     author = {Man'ko, V. I. and Marmo, G. and Simoni, A. and Stern, A. and Ventriglia, F.},
     title = {Tomograms in the Quantum-Classical transition},
     journal = {arXiv},
     volume = {2005},
     number = {0},
     year = {2005},
     language = {en},
     url = {http://dml.mathdoc.fr/item/0505220}
}
Man'ko, V. I.; Marmo, G.; Simoni, A.; Stern, A.; Ventriglia, F. Tomograms in the Quantum-Classical transition. arXiv, Tome 2005 (2005) no. 0, . http://gdmltest.u-ga.fr/item/0505220/