We show that the resonance counting function for a Schr\"odinger operator has
maximal order of growth for generic sets of real-valued, or complex-valued,
$L^\infty$-compactly supported potentials.
@article{0505065,
author = {Christiansen, T. and Hislop, P. D.},
title = {The resonance counting function for Schr\"odinger operators with generic
potentials},
journal = {arXiv},
volume = {2005},
number = {0},
year = {2005},
language = {en},
url = {http://dml.mathdoc.fr/item/0505065}
}
Christiansen, T.; Hislop, P. D. The resonance counting function for Schr\"odinger operators with generic
potentials. arXiv, Tome 2005 (2005) no. 0, . http://gdmltest.u-ga.fr/item/0505065/