Tyurin parameters of commuting pairs and infinite dimensional Grassmann manifold
Takasaki, Kanehisa
arXiv, 0505005 / Harvested from arXiv
Commuting pairs of ordinary differential operators are classified by a set of algebro-geometric data called ``algebraic spectral data''. These data consist of an algebraic curve (``spectral curve'') $\Gamma$ with a marked point $\gamma_\infty$, a holomorphic vector bundle $E$ on $\Gamma$ and some additional data related to the local structure of $\Gamma$ and $E$ in a neighborhood of $\gamma_\infty$. If the rank $r$ of $E$ is greater than 1, one can use the so called ``Tyurin parameters'' in place of $E$ itself. The Tyurin parameters specify the pole structure of a basis of joint eigenfunctions of the commuting pair. These data can be translated to the language of an infinite dimensional Grassmann manifold. This leads to a dynamical system of the standard exponential flows on the Grassmann manifold, in which the role of Tyurin parameters and some other parameters is made clear.
Publié le : 2005-05-02
Classification:  Nonlinear Sciences - Exactly Solvable and Integrable Systems,  High Energy Physics - Theory,  Mathematical Physics,  Mathematics - Algebraic Geometry
@article{0505005,
     author = {Takasaki, Kanehisa},
     title = {Tyurin parameters of commuting pairs and infinite dimensional Grassmann
  manifold},
     journal = {arXiv},
     volume = {2005},
     number = {0},
     year = {2005},
     language = {en},
     url = {http://dml.mathdoc.fr/item/0505005}
}
Takasaki, Kanehisa. Tyurin parameters of commuting pairs and infinite dimensional Grassmann
  manifold. arXiv, Tome 2005 (2005) no. 0, . http://gdmltest.u-ga.fr/item/0505005/