Weak Hopf algebras corresponding to Cartan matrices
Yang, Shilin
arXiv, 0504494 / Harvested from arXiv
We replace the group of group-like elements of the quantized enveloping algebra $U_q({\frak{g}})$ of a finite dimensional semisimple Lie algebra ${\frak g}$ by some regular monoid and get the weak Hopf algebra ${\frak{w}}_q^{\sf d}({\frak g})$. It is a new subclass of weak Hopf algebras but not Hopf algebras. Then we devote to constructing a basis of ${\frak{w}}_q^{\sf d}({\frak g})$ and determine the group of weak Hopf algebra automorphisms of ${\frak{w}}_q^{\sf d}({\frak g})$ when $q$ is not a root of unity.
Publié le : 2005-04-24
Classification:  Mathematics - Quantum Algebra,  Mathematical Physics,  Mathematics - Rings and Algebras,  17B37,  16W30
@article{0504494,
     author = {Yang, Shilin},
     title = {Weak Hopf algebras corresponding to Cartan matrices},
     journal = {arXiv},
     volume = {2005},
     number = {0},
     year = {2005},
     language = {en},
     url = {http://dml.mathdoc.fr/item/0504494}
}
Yang, Shilin. Weak Hopf algebras corresponding to Cartan matrices. arXiv, Tome 2005 (2005) no. 0, . http://gdmltest.u-ga.fr/item/0504494/