Fermionic characters of arbitrary highest-weight integrable sl_{r+1}-modules
Ardonne, Eddy ; Kedem, Rinat ; Stone, Michael
arXiv, 0504364 / Harvested from arXiv
We give a formula for the q-characters of arbitrary highest-weight integrable modules of sl_{r+1} as a linear combination of the fermionic q-characters of special fusion products of integrable modules. The coefficients in the sum are entries of the inverse matrix of generalized Kostka polynomials, which are in Z[q^{-1}]. In this paper we prove the relation between the character of the Feigin-Loktev graded tensor product and the generalized Kostka polynomial. We also prove the fermionic formula for the q-characters of the (unrestricted) fusion products of rectangular highest-weight integrable g-modules.
Publié le : 2005-04-18
Classification:  Mathematics - Representation Theory,  Mathematical Physics,  Mathematics - Combinatorics
@article{0504364,
     author = {Ardonne, Eddy and Kedem, Rinat and Stone, Michael},
     title = {Fermionic characters of arbitrary highest-weight integrable
  sl\_{r+1}-modules},
     journal = {arXiv},
     volume = {2005},
     number = {0},
     year = {2005},
     language = {en},
     url = {http://dml.mathdoc.fr/item/0504364}
}
Ardonne, Eddy; Kedem, Rinat; Stone, Michael. Fermionic characters of arbitrary highest-weight integrable
  sl_{r+1}-modules. arXiv, Tome 2005 (2005) no. 0, . http://gdmltest.u-ga.fr/item/0504364/