Integrable linear equations and the Riemann-Schottky problem
Krichever, I.
arXiv, 0504192 / Harvested from arXiv
We prove that an indecomposable principally polarized abelian variety $X$ is the Jacobain of a curve if and only if there exist vectors $U\neq 0,V$ such that the roots $x_i(y)$ of the theta-functional equation $\theta(Ux+Vy+Z)=0$ satisfy the equations of motion of the {\it formal infinite-dimensional Calogero-Moser system}
Publié le : 2005-04-10
Classification:  Mathematics - Algebraic Geometry,  High Energy Physics - Theory,  Mathematical Physics
@article{0504192,
     author = {Krichever, I.},
     title = {Integrable linear equations and the Riemann-Schottky problem},
     journal = {arXiv},
     volume = {2005},
     number = {0},
     year = {2005},
     language = {en},
     url = {http://dml.mathdoc.fr/item/0504192}
}
Krichever, I. Integrable linear equations and the Riemann-Schottky problem. arXiv, Tome 2005 (2005) no. 0, . http://gdmltest.u-ga.fr/item/0504192/