We study the foundation of space-time theory in the framework of first-order
logic (FOL). Since the foundation of mathematics has been successfully carried
through (via set theory) in FOL, it is not entirely impossible to do the same
for space-time theory (or relativity). First we recall a simple and streamlined
FOL-axiomatization SpecRel of special relativity from the literature. SpecRel
is complete with respect to questions about inertial motion. Then we ask
ourselves whether we can prove usual relativistic properties of accelerated
motion (e.g., clocks in acceleration) in SpecRel. As it turns out, this is
practically equivalent to asking whether SpecRel is strong enough to "handle"
(or treat) accelerated observers. We show that there is a mathematical
principle called induction (IND) coming from real analysis which needs to be
added to SpecRel in order to handle situations involving relativistic
acceleration. We present an extended version AccRel of SpecRel which is strong
enough to handle accelerated motion, in particular, accelerated observers.
Among others, we show that the Twin Paradox becomes provable in AccRel, but it
is not provable without IND.