Perturbation Theory for the Multidimensional Schrodinger Operator with a Periodic Potential
Veliev, O. A.
arXiv, 0504023 / Harvested from arXiv
In this paper we obtain asymptotic formulas of arbitrary order for the Bloch eigenvalue and the Bloch function of the periodic Schrodinger operator of arbitrary dimension, when corresponding quasimomentum lies near a diffraction hyperplane. Moreover, we estimate the measure of the isoenergetic surfaces in the high energy region. Bisides, writing the asymptotic formulas for the Bloch eigenvalue and the Bloch function, when corresponding quasimomentum lies far from the diffraction hyperplanes, obtained in my previous papers in improved and enlarged form, we obtain the complete perturbation theory for the multidimensional Schrodinger operator with a periodic potential.
Publié le : 2005-04-06
Classification:  Mathematical Physics,  35P05
@article{0504023,
     author = {Veliev, O. A.},
     title = {Perturbation Theory for the Multidimensional Schrodinger Operator with a
  Periodic Potential},
     journal = {arXiv},
     volume = {2005},
     number = {0},
     year = {2005},
     language = {en},
     url = {http://dml.mathdoc.fr/item/0504023}
}
Veliev, O. A. Perturbation Theory for the Multidimensional Schrodinger Operator with a
  Periodic Potential. arXiv, Tome 2005 (2005) no. 0, . http://gdmltest.u-ga.fr/item/0504023/