Bernoulli numbers and solitons
Grosset, M-P. ; Veselov, A. P.
arXiv, 0503175 / Harvested from arXiv
We present a new formula for the Bernoulli numbers as the following integral $$B_{2m} =\frac{(-1)^{m-1}}{2^{2m+1}} \int_{-\infty}^{+\infty} (\frac{d^{m-1}}{dx^{m-1}} {sech}^2 x)^2dx. $$ This formula is motivated by the results of Fairlie and Veselov, who discovered the relation of Bernoulli polynomials with soliton theory.
Publié le : 2005-03-09
Classification:  Mathematics - General Mathematics,  Mathematical Physics,  11B68, 37K40
@article{0503175,
     author = {Grosset, M-P. and Veselov, A. P.},
     title = {Bernoulli numbers and solitons},
     journal = {arXiv},
     volume = {2005},
     number = {0},
     year = {2005},
     language = {en},
     url = {http://dml.mathdoc.fr/item/0503175}
}
Grosset, M-P.; Veselov, A. P. Bernoulli numbers and solitons. arXiv, Tome 2005 (2005) no. 0, . http://gdmltest.u-ga.fr/item/0503175/