Let ${\cal G}$ be the incipient infinite cluster (IIC) for percolation on a
homogeneous tree of degree $n_0+1$. We obtain estimates for the transition
density of the continuous time simple random walk $Y$ on ${\cal G}$; the
process satisfies anomalous diffusion and has spectral dimension 4/3.
@article{0503118,
author = {Barlow, Martin T. and Kumagai, Takashi},
title = {Random walk on the incipient infinite cluster on trees},
journal = {arXiv},
volume = {2005},
number = {0},
year = {2005},
language = {en},
url = {http://dml.mathdoc.fr/item/0503118}
}
Barlow, Martin T.; Kumagai, Takashi. Random walk on the incipient infinite cluster on trees. arXiv, Tome 2005 (2005) no. 0, . http://gdmltest.u-ga.fr/item/0503118/