On the number of fully packed loop configurations with a fixed associated matching
Caselli, Fabrizio ; Krattenthaler, Christian ; Lass, Bodo ; Nadeau, Philippe
arXiv, 0502392 / Harvested from arXiv
We show that the number of fully packed loop configurations corresponding to a matching with $m$ nested arches is polynomial in $m$ if $m$ is large enough, thus essentially proving two conjectures by Zuber [Electronic J. Combin. 11 (2004), Article #R13].
Publié le : 2005-02-17
Classification:  Mathematics - Combinatorics,  Mathematical Physics,  Primary 05A15,  Secondary 05B45 05E05 05E10 82B23
@article{0502392,
     author = {Caselli, Fabrizio and Krattenthaler, Christian and Lass, Bodo and Nadeau, Philippe},
     title = {On the number of fully packed loop configurations with a fixed
  associated matching},
     journal = {arXiv},
     volume = {2005},
     number = {0},
     year = {2005},
     language = {en},
     url = {http://dml.mathdoc.fr/item/0502392}
}
Caselli, Fabrizio; Krattenthaler, Christian; Lass, Bodo; Nadeau, Philippe. On the number of fully packed loop configurations with a fixed
  associated matching. arXiv, Tome 2005 (2005) no. 0, . http://gdmltest.u-ga.fr/item/0502392/