We review the higher-order supersymmetric quantum mechanics (H-SUSY QM),
which involves differential intertwining operators of order greater than one.
The iterations of first-order SUSY transformations are used to derive in a
simple way the higher-order case. The second order technique is addressed
directly, and through this approach unexpected possibilities for designing
spectra are uncovered. The formalism is applied to the harmonic oscillator: the
corresponding H-SUSY partner Hamiltonians are ruled by polynomial Heisenberg
algebras which allow a straight construction of the coherent states.