We consider unstable attractors; Milnor attractors $A$ such that, for some
neighbourhood $U$ of $A$, almost all initial conditions leave $U$. Previous
research strongly suggests that unstable attractors exist and even occur
robustly (i.e. for open sets of parameter values) in a system modelling
biological phenomena, namely in globally coupled oscillators with delayed pulse
interactions.
In the first part of this paper we give a rigorous definition of unstable
attractors for general dynamical systems. We classify unstable attractors into
two types, depending on whether or not there is a neighbourhood of the
attractor that intersects the basin in a set of positive measure. We give
examples of both types of unstable attractor; these examples have
non-invertible dynamics that collapse certain open sets onto stable manifolds
of saddle orbits.
In the second part we give the first rigorous demonstration of existence and
robust occurrence of unstable attractors in a network of oscillators with
delayed pulse coupling. Although such systems are technically hybrid systems of
delay differential equations with discontinuous `firing' events, we show that
their dynamics reduces to a finite dimensional hybrid system system after a
finite time and hence we can discuss Milnor attractors for this reduced finite
dimensional system. We prove that for an open set of phase resetting functions
there are saddle periodic orbits that are unstable attractors.