A Weighted L^2-Estimate of the Witten Spinor in Asymptotically Schwarzschild Manifolds
Finster, Felix ; Kraus, Margarita
arXiv, 0501195 / Harvested from arXiv
We derive a weighted $L^2$-estimate of the Witten spinor in a complete Riemannian spin manifold $(M^n,g)$ of non-negative scalar curvature which is asymptotically Schwarzschild. The interior geometry of $M$ enters this estimate only via the lowest eigenvalue of the square of the Dirac operator on a conformal compactification of $M$.
Publié le : 2005-01-13
Classification:  Mathematics - Differential Geometry,  Mathematical Physics,  Mathematics - Analysis of PDEs
@article{0501195,
     author = {Finster, Felix and Kraus, Margarita},
     title = {A Weighted L^2-Estimate of the Witten Spinor in Asymptotically
  Schwarzschild Manifolds},
     journal = {arXiv},
     volume = {2005},
     number = {0},
     year = {2005},
     language = {en},
     url = {http://dml.mathdoc.fr/item/0501195}
}
Finster, Felix; Kraus, Margarita. A Weighted L^2-Estimate of the Witten Spinor in Asymptotically
  Schwarzschild Manifolds. arXiv, Tome 2005 (2005) no. 0, . http://gdmltest.u-ga.fr/item/0501195/