Quantum Unique Ergodicity for maps on the torus
Rosenzweig, Lior
arXiv, 0501044 / Harvested from arXiv
When a map is classically uniquely ergodic, it is expected that its quantization will posses quantum unique ergodicity. In this paper we give examples of Quantum Unique Ergodicity for the perturbed Kronecker map, and an upper bound for the rate of convergence.
Publié le : 2005-01-16
Classification:  Mathematical Physics
@article{0501044,
     author = {Rosenzweig, Lior},
     title = {Quantum Unique Ergodicity for maps on the torus},
     journal = {arXiv},
     volume = {2005},
     number = {0},
     year = {2005},
     language = {en},
     url = {http://dml.mathdoc.fr/item/0501044}
}
Rosenzweig, Lior. Quantum Unique Ergodicity for maps on the torus. arXiv, Tome 2005 (2005) no. 0, . http://gdmltest.u-ga.fr/item/0501044/