Estimates on the number of eigenvalues of two-particle discrete Schr\"odinger operators
Albeverio, Sergio ; Lakaev, Saidakhmat N. ; Abdullaev, Janikul I.
arXiv, 0501036 / Harvested from arXiv
Two-particle discrete Schr\"{o}dinger operators $H(k)=H_{0}(k)-V$ on the three-dimensional lattice $\Z^3,$ $k$ being the two-particle quasi-momentum, are considered. An estimate for the number of the eigenvalues lying outside of the band of $H_{0}(k)$ via the number of eigenvalues of the potential operator $V$ bigger than the width of the band of $H_{0}(k)$ is obtained. The existence of non negative eigenvalues below the band of $H_{0}(k)$ is proven for nontrivial values of the quasi-momentum $k\in \T^3\equiv (-\pi,\pi]^3$, provided that the operator H(0) has either a zero energy resonance or a zero eigenvalue. It is shown that the operator $H(k), k\in \T^3,$ has infinitely many eigenvalues accumulating at the bottom of the band from below if one of the coordinates $k^{(j)},j=1,2,3,$ of $k\in \T^3$ is $\pi.$
Publié le : 2005-01-12
Classification:  Mathematical Physics,  Mathematics - Spectral Theory,  Primary: 81Q10, Secondary: 35P20, 47N50
@article{0501036,
     author = {Albeverio, Sergio and Lakaev, Saidakhmat N. and Abdullaev, Janikul I.},
     title = {Estimates on the number of eigenvalues of two-particle discrete
  Schr\"odinger operators},
     journal = {arXiv},
     volume = {2005},
     number = {0},
     year = {2005},
     language = {en},
     url = {http://dml.mathdoc.fr/item/0501036}
}
Albeverio, Sergio; Lakaev, Saidakhmat N.; Abdullaev, Janikul I. Estimates on the number of eigenvalues of two-particle discrete
  Schr\"odinger operators. arXiv, Tome 2005 (2005) no. 0, . http://gdmltest.u-ga.fr/item/0501036/