Connection Formulae for Asymptotics of Solutions of the Degenerate Third Painlev\'{e} Equation. I
Kitaev, A. V. ; Vartanian, A. H.
arXiv, 0312075 / Harvested from arXiv
The degenerate third Painlev\'{e} equation, $u^{\prime \prime} = \frac{(u^{\prime})^{2}}{u} - \frac{u^{\prime}}{\tau} + \frac{1}{\tau}(-8 \epsilon u^{2} + 2ab) + \frac{b^{2}}{u}$, where $\epsilon,b \in \mathbb{R}$, and $a \in \mathbb{C}$, and the associated tau-function are studied via the Isomonodromy Deformation Method. Connection formulae for asymptotics of the general as $\tau \to \pm 0$ and $\pm i0$ solution and general regular as $\tau \to \pm \infty$ and $\pm i \infty$ solution are obtained.
Publié le : 2003-12-03
Classification:  Mathematics - Classical Analysis and ODEs,  Mathematical Physics,  Nonlinear Sciences - Exactly Solvable and Integrable Systems,  33E17, 34M40, 34M50, 34M55, 34M60
@article{0312075,
     author = {Kitaev, A. V. and Vartanian, A. H.},
     title = {Connection Formulae for Asymptotics of Solutions of the Degenerate Third
  Painlev\'{e} Equation. I},
     journal = {arXiv},
     volume = {2003},
     number = {0},
     year = {2003},
     language = {en},
     url = {http://dml.mathdoc.fr/item/0312075}
}
Kitaev, A. V.; Vartanian, A. H. Connection Formulae for Asymptotics of Solutions of the Degenerate Third
  Painlev\'{e} Equation. I. arXiv, Tome 2003 (2003) no. 0, . http://gdmltest.u-ga.fr/item/0312075/