Analytic continuation of eigenvalues of the Lam\'e operator
Takemura, Kouichi
arXiv, 0311307 / Harvested from arXiv
Eigenvalues of the Lam\'e operator are studied as complex-analytic functions in period $\tau$ of an elliptic function. We investigate the branching of eigenvalues numerically and clarify the relationship between the branching of eigenvalues and the convergent radius of a perturbation series.
Publié le : 2003-11-18
Classification:  Mathematics - Classical Analysis and ODEs,  Mathematical Physics,  Nonlinear Sciences - Exactly Solvable and Integrable Systems,  33E10, 34M35, 34L16
@article{0311307,
     author = {Takemura, Kouichi},
     title = {Analytic continuation of eigenvalues of the Lam\'e operator},
     journal = {arXiv},
     volume = {2003},
     number = {0},
     year = {2003},
     language = {en},
     url = {http://dml.mathdoc.fr/item/0311307}
}
Takemura, Kouichi. Analytic continuation of eigenvalues of the Lam\'e operator. arXiv, Tome 2003 (2003) no. 0, . http://gdmltest.u-ga.fr/item/0311307/