On the integrability conditions for some structures related to evolution differential equations
Kersten, Paul ; Krasil'shchik, Iosif ; Verbovetsky, Alexander
arXiv, 0310451 / Harvested from arXiv
Using the result by D.Gessler (Differential Geom. Appl. 7 (1997) 303-324, DIPS-9/98, http://diffiety.ac.ru/preprint/98/09_98abs.htm), we show that any invariant variational bivector (resp., variational 2-form) on an evolution equation with nondegenerate right-hand side is Hamiltonian (resp., symplectic).
Publié le : 2003-10-28
Classification:  Mathematics - Differential Geometry,  High Energy Physics - Theory,  Mathematical Physics,  Mathematics - Analysis of PDEs,  Nonlinear Sciences - Exactly Solvable and Integrable Systems
@article{0310451,
     author = {Kersten, Paul and Krasil'shchik, Iosif and Verbovetsky, Alexander},
     title = {On the integrability conditions for some structures related to evolution
  differential equations},
     journal = {arXiv},
     volume = {2003},
     number = {0},
     year = {2003},
     language = {en},
     url = {http://dml.mathdoc.fr/item/0310451}
}
Kersten, Paul; Krasil'shchik, Iosif; Verbovetsky, Alexander. On the integrability conditions for some structures related to evolution
  differential equations. arXiv, Tome 2003 (2003) no. 0, . http://gdmltest.u-ga.fr/item/0310451/