Generalizing results of Temperley, Brooks, Smith, Stone and Tutte and others
we describe a natural equivalence between three planar objects: weighted
bipartite planar graphs; planar Markov chains; and tilings with convex
polygons. This equivalence provides a measure-preserving bijection between
dimer coverings of a weighted bipartite planar graph and spanning trees on the
corresponding Markov chain. The tilings correspond to harmonic functions on the
Markov chain and to ``discrete analytic functions'' on the bipartite graph.
The equivalence is extended to infinite periodic graphs, and we classify the
resulting ``almost periodic'' tilings and harmonic functions.