In this work we find the isomonodromic (Jimbo-Miwa) tau-function
corresponding to Frobenius manifold structures on Hurwitz spaces. We discuss
several applications of this result. First, we get an explicit expression for
the G-function (solution of Getzler's equation) of the Hurwitz Frobenius
manifolds. Second, in terms of this tau-function we compute the genus one
correction to the free energy of hermitian two-matrix model. Third, we find the
Jimbo-Miwa tau-function of an arbitrary Riemann-Hilbert problem with
quasi-permutation monodromy matrices. Finally, we get a new expression (analog
of genus one Ray-Singer formula) for the determinant of Laplace operator in the
Poincar\'e metric on Riemann surfaces of an arbitrary genus.