We investigate the evolution of a single unbounded interface between ordered
phases in two-dimensional Ising ferromagnets that are endowed with
single-spin-flip zero-temperature Glauber dynamics. We examine specifically the
cases where the interface initially has either one or two corners. In both
examples, the interface evolves to a limiting self-similar form. We apply the
continuum time-dependent Ginzburg-Landau equation and a microscopic approach to
calculate the interface shape. For the single corner system, we also discuss a
correspondence between the interface and the Young tableau that represents the
partition of the integers.