Supersymmetry is formulated for integrable models based on the $sl(2|1)$ loop
algebra endowed with a principal gradation. The symmetry transformations which
have half-integer grades generate supersymmetry. The $sl(2|1)$ loop algebra
leads to N=2 supersymmetric mKdV and sinh-Gordon equations. The corresponding
N=1 mKdV and sinh-Gordon equations are obtained via reduction induced by
twisted automorphism. Our method allows for a description of a non-local
symmetry structure of supersymmetric integrable models.
Publié le : 2003-09-09
Classification:
High Energy Physics - Theory,
Mathematical Physics,
Nonlinear Sciences - Exactly Solvable and Integrable Systems
@article{0309099,
author = {Aratyn, H. and Gomes, J. F. and Zimerman, A. H.},
title = {Supersymmetry and the KdV equations for Integrable Hierarchies with a
Half-integer Gradation},
journal = {arXiv},
volume = {2003},
number = {0},
year = {2003},
language = {en},
url = {http://dml.mathdoc.fr/item/0309099}
}
Aratyn, H.; Gomes, J. F.; Zimerman, A. H. Supersymmetry and the KdV equations for Integrable Hierarchies with a
Half-integer Gradation. arXiv, Tome 2003 (2003) no. 0, . http://gdmltest.u-ga.fr/item/0309099/