We identify the scaling region of a width O(n^{-1}) in the vicinity of the
accumulation points $t=\pm 1$ of the real roots of a random Kac-like polynomial
of large degree n. We argue that the density of the real roots in this region
tends to a universal form shared by all polynomials with independent,
identically distributed coefficients c_i, as long as the second moment
\sigma=E(c_i^2) is finite. In particular, we reveal a gradual (in contrast to
the previously reported abrupt) and quite nontrivial suppression of the number
of real roots for coefficients with a nonzero mean value \mu_n = E(c_i) scaled
as \mu_n\sim n^{-1/2}.