Insertion and Elimination Lie Algebra: the Ladder case
Mencattini, Igor ; Kreimer, Dirk
arXiv, 0308042 / Harvested from arXiv
We prove that insertion-elimination Lie algebra of Feynman graphs, in the ladder case, has a natural interpretation in terms of a certain algebra of infinite dimensional matrices. We study some aspects of its representation theory and we discuss some relations with the representation of the Heisenberg algebra
Publié le : 2003-08-05
Classification:  Mathematics - Quantum Algebra,  High Energy Physics - Theory,  Mathematical Physics,  17B65, 17B70, 16W30, 81T18, 81T15
@article{0308042,
     author = {Mencattini, Igor and Kreimer, Dirk},
     title = {Insertion and Elimination Lie Algebra: the Ladder case},
     journal = {arXiv},
     volume = {2003},
     number = {0},
     year = {2003},
     language = {en},
     url = {http://dml.mathdoc.fr/item/0308042}
}
Mencattini, Igor; Kreimer, Dirk. Insertion and Elimination Lie Algebra: the Ladder case. arXiv, Tome 2003 (2003) no. 0, . http://gdmltest.u-ga.fr/item/0308042/